APPENDIX E

DESIGN EXAMPLES—MECHANICAL AND ELECTRICAL EQUIPMENT

E-1. Introduction. The design examples in this appendix are to illustrate principles, factors, and concepts involved in seismic design. These are not mandatory; and other equivalent methods, materials, or details complying with this manual and applicable agency guide specifications may be used.

E-2. Design Examples:

Fig. No.	Description of Design Examples		
E-1	Pad-Mounted Transformer.		
	Illustrates the seismic design of a typical, rigidly mounted item of equipment on the ground.		
E-2	Cooling Tower in Building.		
	Presents analysis for a rigidly mounted cooling tower in a multi-story building.		
E-3	Unit Heater—Flexible Brace.		
	Analysis of a unit heater not rigidly braced.		
E-4	Unit Heater—Rigid Support.		
	Demonstrates the reduction of the lateral seismic load by rigidly bracing the unit heater of figure E-3.		
E-5	Water Heater.		
	Indicates how a water heater in a barracks is investigated for seismic loads.		
E-6	Tank on a Building.		
	Demonstrates the seismic analysis of a storage tank on a building. Emphasis is placed on the period determination.		
E-7	Water Riser.		
	Illustrates an approximate scheme used to determine the seismic loading on pipe connections. A riser in a multi-story building is treated.		

GIVEN: W = 10.0 KIPS

RIGID EQUIPMENT ON THE GROUND

ZONE 3 SEISMIC AREA AND I = 1.0

REQUIRED: CHECK ANCHOR BOLT REACTIONS DUE

TO SEISMIC LOADS.

SOLUTION:

 $F_p = ZI(2/3C_p)W_p$ (EQ 12.3) $Z = 0.50, I = 1.0, C_p = 0.75, W_p = 10.0 K/PS$ $F_p = 0.50(1.0)(2/3)(0.75)(10) = 1.5 K/PS$

APPLIED AT CG

SHEAR / BOLT = 1.5/4 = 0.38 KIPS / BOLT ALLOW. SHEAR = 1.50 KIPS / BOLT : 4-3/4" \$ A.B. O.K.

CHECK OVERTURNING -\(\SM \circ = O \)

42" \(\times 1.5 \)

\(\leq \frac{60"}{2} \times 10.0 \)
\(\leq \leq \frac{00 \times 10.0 \ti

Reference: Chapter 12, paragraph 12-5a

Also Check SEAOC 1I per SEAOC 1G 2d
Rigid Non-Building Structure
V = 0.5 ZIW (SEAOC EQ 1-12)
= 0.5 x 0.3 x 1 x 10 = 1.5 KIPS Same as Above

Figure E-1. Pad-mounted transformer.

GIVEN:

WT. COOLING TOWER = 20.0 KIPS
ZONE & BEIGMIC AREA
CONSIDER TOWER RIGIDLY
MOUNTED
WT. TYP. FLOOR = 400 KIPS
100 % MOMENT RESISTING
FRAME : I = 1.0.

REQUIRED:

FIND THE SEISMIC DESIGN FORCE TO BE APPLIED AT C.G. OF COOLING TOWER.

SOLUTION :

CHECK MASS RATIOS (PARA, 12-2d) Wp/wx FLOOR 20/400 & 0.20 O.K. Wp/W STRUCT, 20/2800 < 0.10 O.K.

QUALIFIES AS RIGID EQUIPMENT, RIGIDLY MOUNTED IN A BUILDING (PARA: 12-3),

 $F_{p} = Z I_{p} C_{p} W_{p} \qquad (SEAOC EQI-10)$

z =030(zone 3), I = 1.0

Cp = 0.75 (SEACC TABLE 1-H)

 $F_p = 0.30 \times 1.0 \times 0.75 \times Wp = 0.225 Wp$ = 0.225 × 20 = 4.5 KIPS

Figure E-2. Cooling tower in building.

STEEL FRAME CAN RESIST UNIT HEATER SUPPORTED AT LEAST 25% OF BUILDING'S BY 2-3/4" \$x 3'-0" PIPES REQUIRED LATERAL FORCE RIGIDLY ATTACHED TO CONCRETE SHEAR CEILING . WALLS, Rw 12 11 O 12/0 C.G. G0' GIVEN : NEGLECT EFFECTS OF ROTATION OF UNIT HEATER . WD = WT. UNIT HEATER = 450 LBS = WT. TYPICAL FLOOR == 500 KIPS = WT. STRUCTURE - 2300 KIPS I(OCCUPANCY) = 1.0ZONE & SEISMIC AREA IO(3/4" + PIPE) = 0.037 IN4 E (PIPE) - 30 x 103 KIPS/IN2 REQUIRED : FIND DEGIGN SEISMIC FORCE TO BE APPLIED AT C.G. OF UNIT HEATER. CHECK MASS RATIOS : (PARA. 12 -24) SOLUTION: FLOOR = 0.45/500 4 0.20 OK Wp/wx STRUCT. = 0.45/1300 << 0.10 Wp/W INVESTIGATE AS FLEXIBLY MOUNTED EQUIPMENT IN BUILDINGS PARA. 12-4 (EQ!2-3)

Figure E-3. Unit heater-flexible brace.

FP = ZIPADCDWD

Z=.30 (ZONE 3), I=1.0, Cp=0.75'
Ap, WHICH RANGES FROM 1.0 TO 5.0 IS DEPENDENT ON PERIODS Ta (EQUIP.) AND T(BLDG.)
REFER TO PARA. 12-4-2.

$$k = 2 \left\{ \frac{3(30 \times 10^3)(0.037)}{36^3} \right\} = 0.14 2 \text{ KIPS/INCH.}$$

$$T_{cl} = 0.32 \sqrt{\frac{W_p}{k}} = 0.32 \sqrt{\frac{.35}{.142}} = 0.50 \text{ SEC.}$$
 (10-1)

NOTE: A LATERAL FORCE OF 38G LBS. WILL OVERSTRESS THE 34" & PIPE BRACES; THEREFORE ADD DIAGONAL SUPPORTS AS SHOWN IN FIGURE E-4.

Figure E-3. Continued.

DETAIL OF UNIT HEATER

GIVEN : USE DATA GIVEN IN FIGURE E-3

REQUIRED : FIND DESIGN SEISMIC FORCE

SOLUTION: Fr = ZI,C,W, (SEAOC EQ 1-10

IF RIGIDLY MOUNTED, PARA. 12 -3)

CALCULATION OF THE FOR RIGIDITY CHECK:

APPROXIMATE ANGLE CONNECTIONS BY
PINS. ASSUME ALL LATERAL FORCE IS
RESISTED BY BRACING ANGLES. USE
ENERGY METHOD TO CALC. K2.

Figure E-4. Unit heater—rigid support.

ASSUME K-Vc = 0 : THIS ASSUMES ALL OF THE HORIZONTAL FORCE K IS RESISTED BY THE DIAGONAL .

$$K\left(\frac{\Delta}{2}\right) = \frac{K^{2}LAB}{2AABE} + \frac{(1.41K)^{2}LBC}{2ABCE}$$

$$I = K\left(\frac{LAB}{AABE} + \frac{1.41^{3}LAB}{ABCE}\right)$$

$$K = \frac{30 \times 10^{G}}{\frac{3G}{0.GG} + \frac{1.41^{3}(3G)}{1.88}} = 2.78 \times 10^{5}LBS/INCH$$

$$T_{a} = 0.32 \sqrt{\frac{350}{2.78 \times 10^{5}}} = 0.011 \, \text{SEC}. \quad (EQ12-1)$$

Tq < 0.06 SEC., THEREFORE SUPPORT IS
RIGID (PARA. 12-3)

Fp = ZIpCpWp = 0.30×1.0×0.75 Wp = 0.225 Wp = 0.225 × 350 = 79 LBS.

Figure E-4. Continued.

GIVEN: 1445 LB. WATER HEATER IN BARRACKS, SEISMIC ZONE 4.

REQUIRED: INVESTIGATE THE WATER HEATER FOR SEISMIC LOADS.

SOLUTION: WATER HEATER WILL BE CLASSIFIED AS BEING EQUIPMENT ON THE GROUND AND WILL BE CONSIDERED TO BE A RIGID BODY. SINCE FRICTION CANNOT BE USED TO RESIST LATERAL SEISMIC FORCES, THE WATER HEATER MUST BE RIGIDLY ATTACHED TO ITS FOUNDATION, BOLT WATER HEATER LEGS TO FLOOR,

 $F_p = ZI(2/3 C_p) W_p$ Z = 0.4, I = 1.0, $C_p = 0.75$ (SEAOC TABLE 1-H) $F_p = 0.4 \times 1.0 \times 2/3 \times 0.75 = 0.20 W_p$ F. = 0.20 W. = 0.20 x 1.445 = 0.29 KIPS
F. = 0.29 K APPLIED AT C.G.

CHECK FOR OVERTURNING ABOUT POINT O.

EM __ = 0

0.29 K x 32" < 1.445 K x TAN. 30° x 12" 9.28 K < 10.0 K OVER TURNING O.K.

CHECK FOR LOAD T IN LEG OF TRIPOD. $\Sigma M_{x-x} = 0 = T \times 20.8 + 0.29 \times 32$ $-1.445^{K} \times 7AN 30^{\circ} \times 12^{\parallel}$ $T = \frac{-9.28^{\parallel K} + 10.0^{\parallel K}}{20.8^{\parallel}} = 0.035 \text{ KIPS}$ COMPRESSION

HENCE, USE NOMINAL ANCHOR BOLTS. USE 3-5/8" \$ A.B.

ALLOW BASE SHEAR = 3(1.0K) = 3 K SHEAR O.K. 3.0K >> 0.29 K

Note: SAME RESULTS IF CONSIDERED NON-BUILDING STRUCTURE V = 0.5 ZIW (SEAOC EQ 1-12)

Figure E-5. Continued.

DETAIL OF TANK SUPPORT

GIVEN: WT. OF TANK + WATER = 10.0 K/ TRUSS

ZONE RASEISMIC AREA AND I=1.0 OCCUPANCY ASSUME ALL JOINTS ARE PIN CONNECTIONS. ASSUME CROSS MEMBERS TAKE TENSION ONLY. NEGLECT WT. OF SUPPORT MEMBERS.

REQUIRED: FIND THE DESIGN SEISMIC FORCE.

SOLUTION: HYDRO-DYNAMIC EFFECTS ARE NEGLECTED
EVEN WHEN TANK IS PARTIALLY FULL. CALCULATION
OF STIFFNESS OF TANK STRUCTURE: USE ENERGY
METHOD TO FIND K.

Figure E-6. Tank on a building.

COMPUTATION OF \triangle : $/K \cdot \frac{\triangle}{2} = \sum \frac{F^2 L}{2\Delta E}$

MEMBER	LENGTH	AREA	F	F2L/A
AB CD CA	5.00 FT. 5.00 7.07	1.44	- 1.G	1.25 8.89 15.03
				25.17

..
$$Ta = .32 \sqrt{\frac{W}{K}} = .32 \sqrt{\frac{10}{99.5}} = .102 SEC.$$
(50 12-1)

Ta (EQUIPMENT PERIOD) = 0.107 > 0.06 SEC. SUPPORT IS NOT RIGID (PARA. 12-3)
DESIGN AS FLEXIBLY MOUNTED (PARA. 12-4)

T (BLOG. PERIOD) IS CALCULATED TO BE 0.31 SEC. REFER TO PARA, 12-4c(1) Ta/T = 0.102 /0.31 = 0.33 AND T < 0.5 SEC. FIND Ap FROM FIGURE 12-34

$$A_{p} = 1 + \left(\frac{0.33 - 0.10}{0.80 - 0.10}\right)(5.0 - 1.0) = 2.31$$

$$F_p = 0.15 \times 1.0 \times 2.31 \times 0.75 Wp = 0.26 Wp$$
 $F_p = 0.26 \times 10 = 2.6 \times 10^{-5} / TRUSS$

Figure E-6. Continued.

GIVEN: RIBER AS SHOWN IN MULTI-STORY
BUILDING. SEISMIC ZONE 4

ESSENTIAL FACILITY BUT THE RISER
IS NOT RELATED TO FIRE PROTECTION

REQUIRED: FIND SEISMIC FORCE AT EACH LATERAL RISER SUPPORT.

SOLUTION: AN APPROXIMATE SOLUTION
WILL BE MADE.
FIRST INVESTIGATE THE ALLOWABLE SPAN FOR 4"\$ (405)
PIPE, THEN APPLY SEISMIC
LOADING TO RISER.

- I, IF PIPING SYSTEM IS RIGID

 FP = EICPWP [PARA.12-74 (2)]
- 2. IF PIPING SYSTEM IS NOT RIGID

 FP = EIAP CP WP [PARA. 12-74 (3) 4(4)]

Figure E-7. Water riser.

	PIPE	APPROXIMATE END COND.	MAXIMUM RIGID SPAN [FIG. 12-4, 12-5 & 12-6	15
	AB	FIXED - PINNED	14'-6"	
	BC	FIXED - FIXED	171-31	
	CD	FIXEO - FIXED	17'-6"	
	DE	FIXED - PINNED	14'-6'	
THEORETICAL	A B C O E	APPROXI	MATE URATIONS	D ///// E # 14'

PIPE SPANS ARE SHORTER THAN MAXIMUM RIGID SPAN LIMIT; ... $F_p = Z I C_p W_p APPLIES$. Z = 0.4 (ZONE 4) $I_p = I = 1.25$; $C_p = 0.75$ $W_p = (WT. OF PIPE + CONTENTS) = (10.8 + 5.5) LB/FT = LENGTH$ $<math>F_p = 0.40 \times 1.25 \times 0.75 W_p = 0.38 W_p = 6.1 LB/FT$.

POINT	APPROXIMATE TRIBUTARY LENGTH (FT.)	APPROXIMATE CONNECTION LOAD (LB5)
A	5.0	3/
10	10.0	61
C	10.0	61
D	12.0	73
E	7.0	13

Figure E-7. Continued.